Polyethylene glycol-based protein nanocapsules for functional delivery of a differentiation transcription factor.
نویسندگان
چکیده
Transcription factors (TFs) can direct cell fate by binding to DNA and regulating gene transcription. Controlling the intracellular levels of specific TFs can therefore enable reprogramming of cellular function and differentiation. Direct delivery of recombinant TFs to target cells can thus have widespread therapeutic value, but has remained challenging due to structural fragility of TFs and inefficient membrane transduction. Here we describe the functional delivery of TFs using degradable polymeric nanocapsules to drive cellular differentiation. The nanocapsules were synthesized with poly(ethylene) glycol (PEG)-based monomers and intracellularly-degradable crosslinkers. Physical properties and release kinetics of the nanocapsules were optimized through tuning of monomer and crosslinker ratios to achieve enhanced delivery of cargo destined for the nuclei. The nanocapsules did not display cytotoxicity in primary cell lines up to concentrations of 5 μm. A recombinant myogenic transcription factor, MyoD, was delivered to the nuclei of myoblast cells using degradable nanocapsules to induce myogenic differentiation. MyoD was confirmed to be delivered to the nuclei of myoblasts using confocal microscopy and was demonstrated to be active in transcription through a luciferase-based reporter assay. More importantly, delivered MyoD was able to drive myoblast differentiation as evidenced by the hallmark elongated and multinuclear morphology of myotubes. The activation of downstream cascade was also confirmed through immunostaining of late myogenic markers myogenin and My-HC. The efficiency of differentiation achieved via nanocapsule delivery is significantly higher than that of native MyoD, and is comparable to that of plasmid transfection. The encapsulated MyoD can also withstand prolonged protease treatment and remain functional. The ease of preparation, biocompatibility and effective cargo delivery make the polymeric nanocapsule a useful tool to deliver a variety of recombinant TFs for therapeutic uses.
منابع مشابه
The Effect of Adding Synbiotics to Polyethylene Glycol in Childhood Functional Constipation: A Randomized Clinical Trial Study
Background This study aimed to determine effects of synbiotics on treatment of functional constipation in children aged 2-10 years old. Materials and Methods This randomized single blind clinical trial study carried out on children who had functional constipation based on the Rome III criteria. The polyethylene glycol + synbiotic group (P+S group, n=38)received the synbiotic with polyethylene ...
متن کاملSynthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs
Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...
متن کاملSynthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs
Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...
متن کاملLipid Nanocapsule-Based Gels for Enhancement of Transdermal Delivery of Ketorolac Tromethamine
Previous reports show ineffective transdermal delivery of ketorolac by nanostructured lipid carriers (NLCs). The aim of the present work was enhancement of transdermal delivery of ketorolac by another colloidal carriers, lipid nanocapsules (LNCs). LNCs were prepared by emulsification with phase transition method and mixed in a Carbomer 934P gel base with oleic acid or propylene glycol as penetr...
متن کاملBiodegradable double nanocapsule as a novel multifunctional carrier for drug delivery and cell imaging
Highly-efficient delivery of macromolecules into cells for both imaging and therapy (theranostics) remains a challenge for the design of a delivery system. Here, we suggested a novel hybrid protein-lipid polymer nanocapsule as an effective and nontoxic drug delivery and imaging carrier. The biodegradable nanocapsules showed the typical double emulsion features, including fluorescently labeled b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 33 21 شماره
صفحات -
تاریخ انتشار 2012